

Suez University Faculty of Petroleum and Mining Engineering Petroleum Exploration and Production Engineering Program

Data Visualization

Lecture 7 – Monday April 3, 2017

Outline

- How to visualize your data?
- 2D graphics
- 3D graphics
- Animation

Outline

• <u>How to visualize your data?</u>

- 2D graphics
- 3D graphics
- Animation

How to Visualize your data

Matlab Graphics

Outline

- How to visualize your data?
- <u>2D graphics</u>
- 3D graphics
- Animation

hist

pareto

image

•

pcolor

L7, BSE122: 2016-2017 Suez University © Dr. Alaa Khamis

Plot of dots

plot is the most basic function for creating 2D graphics.

pentagram

hexagram

p h

Plot of dots: Example

%Group #1 w pre1 = [148 153 170 159 162]; %weight in previous month w cur1 = [90 85 92 91 88]; %weight in current month %Group #2 w pre2 = [157 172 179 167 179]; %weight in previous month w cur2 = [81 69 87 70 77]; %weight in current month Notice that Matlab %Plotting the previous vs. current week weights of each contestant automatically chooses plot(w pre1(1), w cur1 (1), 'bo', w pre1(2), w cur1 (2), 'bo', ... w_pre1(3), w_cur1 (3), 'bo', w_pre1(4), w_cur1 (4), 'bo', ... the axes borders that w pre1(5), w cur1 (5), 'bo', ... fit the plot... w pre2(1), w cur2 (1), 'r*', w pre2(2), w cur2 (2), 'r*', ... w pre2(3), w cur2 (3), 'r*', w pre2(4), w cur2 (4), 'r*', ... w pre2(5), w cur2 (5), 'r*'); 95 set(gcf, 'color', 'w'); % set a white background for the plot 0 0 0 90 0 gcf – get handle 85 0 of current figure 80 This is very labor intensive... 75 The same result can be achieved 70 with much less work using vector notation 65 145 150 155 160 165 170 175 180

Plot of dots using vectors

Plot (opening and closing)

- Notice that every time we plot a figure it overrides the previous figure (unless we use hold on)
- If we want to open a new figure without erasing the previous one we use a command called **figure**
- If we want to close all the figures we use the command close all

Adding labels and titles to the plot

Plot (manipulating the axis)

Plot: Example-2

Adding legend

```
x = 0 : 0.1 : 4*pi
y_sin1 = sin(x);
y_sin2 = sin(x + 0.2);
y_sin3 = sin(2 * x);
plot(x, y_sin1);
hold on
plot(x, y_sin2, 'r');
plot(x, y_sin3, 'm--');
legend('sin(x)', 'sin(x + 0.2)', 'sin(2x)');
hold off
```

A figure legend can be added using the **legend** command

Plot browser

You can make additional modifications to your plot using the plot browser.

Plotting Multiple Rows

The variable **soil_prop** contains the a soil property values of 7 oil well locations in 6 different samples.

	S 1	S 2	S 3	S 4	S 5	S 6
Well1	0.3767	0.4701	0.0175	-0.0712	0.03	0.022
Well2	0.5128	0.5367	0.0056	0.0179	0.0443	0.0291
Well3	0.4303	0.4447	0.0326	0.0498	0.1646	0.049
Well4	0.4745	0.5575	0.1232	0.1444	0.0259	0.0187
Well5	0.2148	0.238	0.1591	0.1438	0.1826	0.1717
Well6	0.4852	0.4029	0.0542	0.1435	0.1424	0.0546
Well7	0.4258	0.3948	0.023	0.1261	0.0398	0.0199

Plotting Multiple Rows

Plot the expression of the first well

```
2 2
    File: wells.m
    Author: Alaa Khamis
    Last modified on November 10, 2015, 11:47AM
88
88
    This script plots analyzes the soil property values of
€ €
    different oil wells
₽ ₽
% %
clc;
close all;
                                                                                             Soil property values vs. samples
                                                                            0.6
data file='wellData.txt';
% % Reading data
                                                                            0.5
disp(['-->Reading data from file: ',data file]);
                                                                         Soil property value of each well
soil vals=dataset('file',data file);
                                                                            0.4
% Plot the expression of the oil well
plot(soil vals(1, :), '-*');
set(gcf,'color','w');
xlabel('Sample');
                                                                            0.3
ylabel('Soil property value of each well');
title('Soil property values vs. samples');
                                                                            0.2
                                                                            0.1
```

0

1

1.5

2

2.5

6

3.5

Sample

4

4.5

5

5.5

3

Plotting Multiple Rows

Plot the expression of all the oil wells

Plotting other types of graphs

Matlab has many other types of plotting capabilities

3

Plotting other types of graphs

Plotting other types of graphs

Colors can be represented as a combination of **Red Green Blue**

scatter(x1, y1, 25, [1 0 0], 'filled');

Color of each point

R	G	В	Color
1	0	0	Red
0	1	0	Green
0	0	1	Blue
0	0	0	Black
1	1	1	White
1	1	0	Yellow
1	0.6	0.4	Copper

• Plotting other types of graphs Making scatter plots

```
% scatter plots
figure;
set(gcf,'color','w');
x1 = randn(1, 100);
y1 = randn(1, 100);
scatter(x1, y1, 25, [1 0 0], 'filled');
hold on
x2 = rand(1, 100) + 2;
y2 = randn(1, 100);
```

```
scatter(x2, y2, 25, [0 1 0] , 'filled');
```


• **Plotting other types of graphs** Making scatter plots

```
% scatter plots
figure;
set(gcf,'color','w');
x1 = randn(1, 100);
y1 = randn(1, 100);
scatter(x1, y1, 25, [1 0 0], 'filled');
hold on
x2 = rand(1, 100) + 2;
y2 = randn(1, 100);
scatter(x2, y2, 25, [0 1 0], 'filled');
x3 = rand(1, 100) + 3;
y3 = randn(1, 100) * 2;
scatter(x3, y3, 25, [0 0 1], 'filled');
```


Scatter plot

title('Scatter plot');

hold off

Putting multiple plots in the same figure

subplot(# rows, # columns, current plot position)

Outline

- How to visualize your data?
- 2D graphics
- <u>3D graphics</u>
- Animation

A 3D surface is defined as:

$$z = f(x, y)$$

We can create 3D surfaces using 2 functions:

- mesh(x, y, z);
- surf(x, y, z);

Mesh Plot

Mesh plot with finer grid

```
% mesh with finer grid
xx = -3 : 0.2 : 3;
yy = -3 : 0.2 : 3;
[x, y] = meshgrid(xx, yy);
z = 5 * sin(pi / 15 * x .* y).^2 + 10 * exp( -(x.^2 + y.^2)) + 1;
figure;
mesh(x, y, z);
xlabel('x'); ylabel('y'); zlabel('z');
set(gcf,'color','w');
view(30, 50);
```

view([az, el]) sets the angle of
the view from which an observer
sees the current 3-D plot:

- az is the azimuth or horizontal rotation (degrees)
- el is the vertical elevation (degrees).

Surf plot

```
% surf plot
figure;
surf(x, y, z);
xlabel('x'); ylabel('y'); zlabel('z');
set(gcf,'color','w');
view(30, 50);
                                 15
                                 10
                               Ν
                                 5
```

0 -3

-2

-1

0

2

х

3

2

0

y

-2

-3

3

Surf plot: omitting the edges of the surface

```
% Omitting the edges of the surface
figure;
surf(x, y, z, 'EdgeColor', 'none');
xlabel('x'); ylabel('y'); zlabel('z');
set(gcf,'color','w');
view(30, 50);
```


Surf plot: making the grid even finer

Surf plot: playing with the colors

Colors can be represented as a combination of **Red Green Blue**

R	G	В	Color	colormap([1 0 0])	colormap([0 1 0])
1	0	0	Red		
0	1	0	Green		
0	0	1	Blue		
0	0	0	Black	1 0 1 2 3 3 y	a 1 2 3 3 y
1	1	1	White	colormap([0 0 1])	colormap([1 1 0
1	1	0	Yellow	16-	15 y
1	0.6	0.4	Copper	10	10
•••	•••	•••			

• Surf plot: show several surfaces on the same plot

Using 3D graphics to visualize your experimental data

Outline

- How to visualize your data?
- 2D graphics
- 3D graphics
- <u>Animation</u>

Animation

- **getframe** Capture axes or figure as movie frame
- **movie** Play recorded movie frames
- frame2im Return image data associated with movie frame
- **im2frame** Convert image to movie frame

Animation

```
figure
Z = peaks; % returns a 49-by-49 matrix of Gaussian distribution.
set(gcf,'color','w');

for j = 1:40
    X = sin(j*pi/10)*Z;
    surf(X,Z)
    F(j) = getframe;
end
```

